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Quantum transport theory based on the equilibrium density projection technique
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We introduce a projection technique, called the equilibrium density projection technique, which involves
two schemes: the ensemble average projection scheme and the combined projection scheme. Using this tech-
nique directly on the Liouville equation, we derive the linear-nonlinear response formula. We also expand the
scattering factors to a continued-fraction representation to avoid the danger of divergence, and expand again
the continued-fraction representation formula in a series form. Finally, we introduce a simple example for the
linear response term and compare the two schef8d€963-651X97)13501-2

PACS numbd(s): 02.50~r, 05.40:+j

[. INTRODUCTION Sec. I, we will derive the integrodifferential equation of a
dynamic variable, and obtain a response function in Fourier-
Research in quantum transport theory is very importantaplace transformed space. In this first stage, the result con-
for investigation of microscopic phenomena of many-bodytains a nonlinear response term which is not determined. In
systems. There are many theories in various methodologie§gc. lll, using themth order nonlinear projection operator,
which are the Green function methoi®-10], the linear re- we will obtain the nonlinear response terms in similar ways
sponse formula from the quantum Liouville equatiph3—  to Sec. Il. In Sec. IV, we will expand the linear-nonlinear
17], the quantum perturbation theories based on Boltzmann’scattering factors to CFR2,12—-14,1¢ with the nth order
transport equatiofil9], etc. Among those theories, many are projection operator to avoid any danger of divergence. And
based on the well known Kubo response thefitg—15. the CFR formula shall be expanded again in a series form for
Many of the theories use the projection technique to obtain ghe sake of examining the convergeri@®—-23. In Sec. V,
useful form of the scattering factpt2—1§. Although those we will introduce a simple example in an electron-impurity
theories are quite reasonable, the nonlinear behavior hagystem, and compare the two schemes.
been investigated in the limited scheme. Also, the problem of
divergence in the expansion of the scattering factor has been II. THE EXPECTATION VALUE OF A DYNAMIC
discussed in some researdb]. On the other hand, by di- VARIABLE BY A EQUILIBRIUM DENSITY PROJECTION
rectly using a projection operator on the Liouville equation, TECHNIQUE (EDPT)
Kenkre's group suggested a response function, which in- _
volves Kubo's theory as the lowest-order approximafibh We consider a system of many-body systems
Although their theory contains a nonlinear factor in theWnich is subject to an oscillatory —external field
propagator, it is difficult to expand this term, since it is con-E(t)zé,Elexp(—iwt), whereég, is the unit vector in the ex-
tained in the exponent. ternal field direction (=x,y,z, etc) and w is the angular
Our group introduced a response function in many elecfrequency. Then the Hamiltoniad(t) and the correspond-
tron systems in which the nonlinear terms can be expandeitg Liouville operatorL(t), respectively, are given by
by using the combined projection technigi@&PT). We also

suggested a continued fraction representatoBR) of the H(t)=Hs+H'(1), 2.9
scattering factor which is contained in the linear response _
function [2]. In this paper, we will derive a generalized H'()=RE|(t) =R Eexp —iwt) (2.2

linear-nonlinear response formula with the more compact
symbols of elements, and expand the linear-nonlinear scaft"
tering factors to a CFR formula, which extend the former
linear CFR formula to a nonlinear CFR formula. The projec-
tion operator used in this paper is different from Kenkre's,
since it contains thenth order nonlinear index and theh
order CFR index. Futhermore, this technique involves tW%hereHS andL, are the time-independent part abfl cor-
schemes, which are the ensemble average projection scheme . ST
) , S responds toR;, the response operator in tHedirection
(EAPS: the same as Kenkre's definitiph]) and the com- (I=x.y.z, etc), which implies that
bined projection schem@P9 [2]. We call this the equilib- Yz ' P
rium de_n_5|t_y projection techniqu€EDPT) since it |r_1vol\(es L/ ()X=[R, ,X]E (1) 2.5
the equilibrium density operator as a projection direction. In
for an arbitrary operatoX . The density operator for the
systemp(t) can be written as

L(t)=Lg+L/(1), 2.3

Li (1) =L/E(t), (2.9

*Fax: 82-53-952-1739. Electronic address:
choisd@knuhep.kyungpook.ac.kr p(t)=pstp'(1), (2.6
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whereps is the equilibrium density matrix. We can define the  gP,p’ (1)
i%

expectation value of arbitrary dynamic quantiy as —t ~ ProbsProp” (1) +PiolsPop’ (1) +{PioDo(t)
— + ProDo}Ei(1), (2.16
FO=THRp(D} =2 rialt), 2.7
) apliop’(t) ’ ’ ’
hh————=PoLsPiop' (1) + PioL sProp’ (1)

wherek is the direction index K=x,y,z, etc), Tr denotes ot
the many-body trace, and r N ,
Yoo +{PioDo(t) + PioDolE(t),  (2.17)

Mo (1) =(Rep (1)) g - (2.8 where

In order to get a useful form of(t) from the quantum Do=L/ps (2.18
Liouville equation, we define the projection operator in two
types. The one is the ensemble average projection schend@d
(EAPS introduced first by Kenkr¢l] as

try — pt
PiX=BiTr{RX} (29 In order to expand the quantity in terms of the equilibrium
density p, and remove the fourth term in Eq2.17), we
where define the projection directioB,,, as
L/ Lips D
r_ | Ps _H1Ps__ VYio
= - 2.1 Byo=—=+—, 2.2
“ TR ps} (19 MO Ao Axio (220
and using this we can obtain the expectation value of thgvhere
dynamic quantityR, as Awio=((RDo)). (2.21)
TW(t)=Pip(t)/B,. (2.1)  Itis to be noted that the direction of this projectionLisps

and the projection is time independent. We assume that the

The other type is the combined projection sche(@®9 perturbation of the system may be expanded2ds
which was introduced by our grodg] as

((RDo(1)))
@ a D/(t)=Djp—5=——- 2.2
PEX=B{(RX) aa (2.12 o V=P (R D) 222
where Thus the solution of Eq(2.17) can be
—i t
L/ P”t=—fds t—S)ProLsProp’(S).
Bo = |,Ps (2.13 koP' (1) ( ﬁ) . Geo(t—3)PyoLsProp’(S)
(RkLI ps) aa (223)
and using this we can obtain Here the propagator is
o Gro(7)=exp( —iTPLs/f), (2.29
rd(t)=2 PEp(t)/Bg. (2.14

where r=t—s . Substituting Eq(2.23 into Eq. (2.16, we

_ o obtain an integrodifferential equation fog(t) as
These two schemes are useful in a description of real systems

and have some merits in calculating the scattering mechas#r (t) t .
nism as shown in Sec. V.. Here we will write the two projec- — ¢~ Ako"k() = | Quao(t=S)ri(s)ds=(i/7) AaoBi(1)
tion schemes in a unified notation as

—(ilh)r), (2.29

wherer(0)=0 for the initial condition and

PoX=Bxio((RkX)), (2.19

where the symbol()) is Tr{ } in the EAPS scheme, and is i

() e in.t_he_ CPS. Th_is proj.ecti_on techni_que shall bg called Ao= W((Rleo)), (2.26
the equilibrium density projection techniqEDPT), since kIO

Byo includes ps. We define the dynamic variable

N0 =((Rep(1))) = Prop(t) /By , which can ba (t) in the Ria=RiLs, 2.29
EAPS andr,,(t) in the CPS. We can obtain(t) by using 1

P.ko and |t’§ Abelian inversé® ,=1—P,q . From the Liou- Quio(7)= w7y ((Resf1(7))), (2.29
ville equation we have kIO
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f1(1)=Gyo(Df1, (229 m oo D10
- BkIO(t)_AE;O(EI(t))m, (36)
fi=L,D,, (2.30
where
L1=(1—Pyo)Ls=Pyols, (2.3D) m =(R"D,)) (3.7
klo= k “10/7- .
r(O)=(Rip’ () E (1), 232 |, 4 similar way as Eq(2.22), we assume that
Ri=RL/. (2.33 DI ((R'Do(1))) 38
10 !

. . o . . . =D (®RmD,,))
Equation(2.29 is the kinetic equation which shows the time k=10

evolution of the dynamical variable. The first three terms onypan with a similar procedure from E€2.16) to Eq.(2.34)

the right hand side are of linear response, but the last terf}o have the expectation value of theh order nonlinear
gives nonlinearity. We now express the behavior of the dy'response function iz space as

namical variable in the Fourier-Laplace transformed space.

The Fourier-Laplace transform¥g, of a time-dependent (i/ﬁ)AE}OE’““(z) —(i1R)T™Y(2)
+

function X(t) is defined as T(2)=— = . =,
iZ= Aot Quio(2) 12— Ao+ Qxio(2)
~ ® (3.9
X(Z)ETFL[X(t)]=f exp( —izt)X(t)dt.
0 where
Then by applying the convolution theorem, the of Eq. Am (i) —i (3.10
=Mlw)+ ——— > .
(2.25 turns out to be klo w AT (RTDy))
. = : ~1
'Fk(z): _(I/ﬁ)Ak,lgEl(Z) N —(I/ﬁ)rj(Z) RrknlszmLs (311)
iz— Aot Z2) iz—Ayot z -
kot Qxio(2) ko Qxio( )(2.34) and30ly(2) is the T, of Qlly(7)., given as
WhereF(2), Quio(2), Ei(2) andT }(z) , respectively, are the O (7)) = ———((R™ (7)) (3.12
Tr of (), Quio(t), Ei(t) andri(t) . The last term, which S
shows the nonlinearity, shall be dealt with in a similar way in
Sec. III. wherer,=t—s,, and
f1(7m)=Gio(Tm) 1, (3.13

IIl. THE KINETICS OF THE mTH-ORDER NONLINEAR
RESPONSE Gio(Tm) =X —i TPy L/ 1) (3.149
We can reform Eq(2.34) as

f'=LTD,, (3.15
Tu(2) =T ioEi(2) + TR k(2), (3. . . .
1=(1-PpLs=PLs, (3.16
where
e =Ry p (D)EMH Y, (3.1
—(ilh
TRio= ) (3.2 Ry I=Ry(L{)™" L, (3.18

iz—Axio+ Quio(2)
Substituting successively E¢3.9) into Eqg. (3.1), we have

and can guess that the nonlinear part can be expanded s¥fe linear-nonlinear response functionzrspace as
tematically further as in the previous pap€2s3. In order to

expand the nonlinear part , we define théh-order nonlinear _ ” m J_ o =mel
projection operatoP[l and it's Abelian inverseP[l as rk(Z):mZ;O L Tho | AxicEl (21, (319
PRoX=Biio(1) (RR(E/(1)™X)), (33  where
m_1—pm , —(ilh)
PR =1-PQ, (3.4 Thy= (3.20

iz—Aljo+ Qlio(2)

Here the first termm=0, is the linear response. If the system
RE=R (L™ (359 is subject to an oscillatory external field
E(t)=E;(0)exp(iwt) , we have theZ, of j+ 1th degree of
and we choos®;,(t) as it, as

where
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o

~ L ~ P (7 —i —i ,
Etl(z)=|1- > (-DNijw(iz+io) 1¥|ELE(2), L(m) PaDl+ PaLTPafT (1)
k=0 dTm 2 o
(3.2)
and Eq.(3.19 can be rewritten as % )P LT kl 1 (Tm)' (4.6
? V4 =y E Z), 3.2 ’ ’
k(2)=xkE(2) (3.22 P () i i , o
i Dm+ . m Lm m em (T )
Where aTm ﬁ k1“1 ﬁ ki=1"ki1'1 m
~ _ J _l ’ ’
X(2) mzlo{ jljo Thio + 7) PaLTPafT (7m), 4.7
Al 1- E (—DYijo(iz+iw) B E where
(3.23 Dii=L7TfT. (4.8
which is the lineanh=0) and nonlinearfi=1) susceptibil- In order to expand with respect to the equilibrium density
ity in the z space. ps throughD/] and to remove the first term of E(4.7), we

define the projection directioBy); as
IV. THE CONTINUED FRACTION REPRESENTATION
(CFR) OF THE LINEAR-NONLINEAR SCATTERING pm

~ 11
FACTORS, QM,(2) Buii=m- AT

4.9
The time-independent Liouville operatbg is composed

of diagonal part Ly and nondiagonal partL, as where

Ls=L4+L,. There are many studies to expa@d|,(z) in "

series  expansion for  the diagonal  propagator k1= ((RGDD). (4.10

Gy=(iz—Ly) !, such asG=G,3,(G4P'L,)" [16]. But

this manipulation may provoke danger of divergence at reso- S0, we obtain from Eq(4.7)

nance peakw=w, [15]. To avoid this danger we like to

expandG in a continued fraction fornj2,12—-18. We start — —(i/h J K h)PI LTPD g’ dh

with the equation of motion fof(r,) in Eq. (3.12 PRAT (rm)=—(i/) 1(7m =) (7n)

(4.11
afT(Tm) |~ mem
0ty \ LTt (7m), (4.2 where the new propagator is
with the definitions of Eqs(3.13—(3.18. We can separate it KM 7—h)=exp(—i (7m— h)PkmlrL’l“/ﬁ)_ (4.12
as
. R Substituting Eq(4.11) into Eq. (4.6), we can obtain the in-
fr(mm)=f1+f1 (7m) (4.2 tegrodifferential equation as

and in order to obtairﬁsﬂ’,o(z), we define the projection op- a((Rqufm,(T M)
m

eratorPy; and it's Abelian inverse as P =— ili_) ki1
PiaX=B1((Ri1X)), (4.3
(ﬁA )((szD NRBIT (7))
PI X=(1-PR)X, (4.4) ki1
1 Tm
such that —(m) ( ( RE‘ZL fzm(rm—h)dh))
2AfioQito( 7m) = (RAFT(7m))) (RO (7)), 413
= (R + (LB (PR T (7)),
where
(4.5
=Ral1, (4.14

where we will choose the projection directi@y), later. We

now separate Eq4.1) with help of this projection operator " " m
as f2(7'm1)EK1(7'm_ h)fy, (4.15
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M= m’Lm m_| mpm 4.1 ~ 1
2=PlaliD1=L2D1 19 B (2= e (RETR())
h? Akl n—1)
LP=PRLY (4.17 B
) ) ) = —m—— (R fM)
and we can obtain the solution of E@.13 in the z space Zh*Ain-1)

from 7¢_ utilizing the convolution theorem, as

l m
. _(g) ki1
(R (2))= —
iz+ ﬁAkIl)((RkZD )+ Qyia(2)
(4.18
where
1 -
Qm(Z) ( R2AT )((kazfzm(Z))), (4.19
so, we have
—i
leo(z) 2Am ((Rklf )
g 0
N _ZﬁSAkm ki1 |
iz+ ﬁAk|1)((Rk2Dm))+lel(Z)
(4.20
since

—_~ * . ’ 1 ’
fim(z)= fo e HT+ Y (n)]dt=—fT+11"(2).
(4.21)

We can obtain a similar form 062]1(2) by repeating the

_1 m
ZﬁsAm(nfl) kin

+ 1
i —
iz+ M)((an%—l)Dnm))—’_an(z)
with the definitions 4.22
D m
Amn(( knx))i (423)
Dm anfnm, (n=1) (4.29
kIn ((RknD ), (n=1) (4.25
Rkn Rmn 1)Ln 1 (I’]?Z) (4-26)
Ly= Pk(n pbat1,  (n=2) (4.2
fm=pmpm - (n=2) 4.29
1
len(Z) RIAT ((Rk(n+1)fnm+1(z))) (n=1)
(4.29
= —fn (n=2
n(z)_iz_iLm n» (n/ ) (430)

Substituting repeatedinth order ton—1th order, we can
expand the linear scattering factQg,o(z), wherem=0 and
the nonlinear scattering facto®y,(z), wherem=1 , to

similar procedure. Tha—1th-order CFR form is obtained as compact CFR form as

iAD

Qllo(2) =i yP+

iz+iw]+iy]+

iA

+

n—2

A

AT

iz+io)+iyy+ ———m——m
2 Y T+ YD

, (4.3)

A M
IAn_y

iz+iop ,+iye ,+

iz+iop (Fiyp  +

H m
A,
iz+io)+Qin(2)




where
1 m
Th= Zh2AD (Rgn+pfars)), (n=0) (432
m_ |— m _
An= (zﬁ%\kl(n 1)) ki (N=1) (4.33
1
on= (;LA )((Rk(n+l)D ), (n=1). (4.34

In this expansion, since the diagonal propaga®gris not
included in the elements @y,,(z), we can expand this form
to series ofyy', A]', andw;' with no danger of divergency
[23]. For series expansion, we define

= 'An 4.3
"iz+ier+iyr+Im (4.39
and
1
Km:*, 43
"iztiw)Fiyl (4.39

so, we can expantl]' s, as

o]

r —|Ame2 (=)™ K™, (4.37)

Thus we can reform the scattering facéﬂo(z) as

QMo(2)= wo+<|Am>K'“2< 1) KT ADKY

x2 <—1>S[ KZ(IA)K3

x> (-

r

1)C(K?F4)°J

~iyg+(ATKD- <—1>f|LH1 <iA2’>}

r-1
x| IT (kM2
s=1

K{“]+-.-. (4.39

In order words, we can expand the scattering factor ~

Qxio(2) in series form withA]" and K['. We expect, in a

weak perturbed system, that we can examine the conver-

gency in the first several terms easily.

V. AN EXAMPLE AND DISCUSSION
OF THE TWO SCHEMES
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quency. In this system the response oper&oin Eq. (2.2
can be—P,, where— P|=Z,;¢;r; is the polarization, and the
corresponding Liouville operatdr(t) in Eq. (2.5 is given
by

L' (t)X= =[Py, X]E (1) (5.9
for an arbitrary operatoK. We consider a system of elec-
trons in isotropic semiconductors which interact weakly with
background impurities and assume that the electron-electron
interaction is absent. For a static magnetic fi@dapplied in
the z axis, the electron energy is quantized. If, in addition, a
microwave of angular frequency is applied along thez
direction, the electromagnetic energy is absorbed at
w=~w:, o being the cyclotron frequency, i.e., the cyclotron
transition arises. The Liouville operattr, in Eq. (2.3 can
be written as

L=LetL,, (5.2
whereL, andL, are the Liouville operators corresponding to
the electron Hamiltoniatd, and the scattering potenti#,
respectively. If the microwave is circularly polarized, the ab-
sorption power is proportional to the real part of the conduc-
tivity tensor o (w) with k=— and =+, for which the
dynamic variableR, in this system is the curredt , as

(R ap=Jaa+198,a+1- (5.3

And using the Kubo identity2,13] we have
(L,ps)BaE(DIO)ﬁa:_AFﬂ a‘]a+la5B wt1- (5.4
Here  J*=J,*iJy, AFg ,=(Fs—F,)leg, and

€s.= €5~ €,, Wheree,, is the energy eigenvalue afid, the
Fermi-distribution function for the stater)=|N,k) , N be-
ing the Landau index ank the electron wave vector.

A. CPS
Applying the CPS, we obtaif2]

Akio= (5.5

; - +
—I AFa+l,a‘Ja,a+l’Ja+l,a’

A%O:_ieaJrl,a:_iwc- (56)

Thus we have the linear conductivity in the CPS as

AFa+la aDz+1‘]a+la
—ifh
o(w)= E (@)= —i ; (ho—fog) —iAQly(w)’
(5.7

where~Ré&k|(w))>0 sinceAF .., ,<0 , and the scattering
factor Qgo(w) with the definition of Eq(2.28) is given as

1
In order to illustrate and compare the two schemes, the Qfio(@)= 7 RZA S [Riaf1(0)]aa=iA(@,0)+ y(a,0),

CPS and EAPS, we consider a system of many electrons
field

wh|ch is subject to an

E= e, E(0)exp(iwt), Wheree, is the unit vector in the elec-
tric field directionl (I=x,y,z, etc) andw is the angular fre-

oscillatory electric

(5.8

which can be calculated further in a similar manner. In Eq.
(5.8), the imaginary pari («,w) is the line shift and the real
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part y(@, ) is the half width of the broadening due to the and so, in this scheme, the line shif{«, ) is the integra-
scatt.ering..We can obtain the absorption power, neglectingon of the imaginary part ofQf(w) and ,Ehe half width
the line shift, as y(@,®) is the integration of the real part @ (), as

P(0)= ZREGE?)*Relo(w)) .
J'deQﬁO(O,kZ,w)EiA(O,kZ,w)-i—y(O,kZ,w).

(5.13

_2 |AFa+1,a||JZ+l,a|27(alw)

> om0t a9

where “Re” means the real part. In the quantum limit WhereIf we neglect the shift, the absorption power is obtained as

hw>kgT , almost all the electrons are in the ground state,
|@)=]0k,) . Hence, the most important contribution to the
absorption power comes from transition between the Landau
leveIN=0 andN=1 , so we can get the absorption power as

Y(0k,, @) [dk,|AF 1 o372
(w_wc)z'l"yz(O’kz-w) '

P(w) (5.14

a1l at 14270k, , @) where

w— wC)2+ ’yz(oik25w)

|AF
P(w)ocf dk, ( (5.10
and thus in the CPS, we cannot obtain the half width directly,
but can get it in the absorption power through integrating for
k, in Eq. (5.10. Even though the CPS has the merit of cal-
culating the power in the feature, it is acompanied by thesg it is not necessary to calculate the absorption power to
difficulty of integration. obtain the line width. The line widtly(0k,, ) is merely the
k, integration of the real part de("'(w) in Eqg. (5.195. The
sacttering factoQy|(w) was introduced in the lowest- order
CFR in our previous work.2]

(0K, ,0)= f dk,ReQ¢ (0K, , ) (5.15

B. EAPS
In the EAPS, the form of the conductivity is given by

(i3 Ao

_ —(ilh)ARo VI. CONCLUSION
Gl )= == , | |
¥ — Ao+ Qo @) iz—> Ar 4> 0 () In this paper, we have obtained the general response func-
< Ako™ 2 Rkio tion using the EDPT which contains two schemes, the EADS

and CPS, in Secs. Il and Ill. The response function involves
a linear response term and nonlinear response terms.
where the prime indicates that the projection oper&piis In Sec. IV, we have expanded the scattering factors,
used instead oP} in the calculation ofAg; and Qg (w).  which are contained in the linear and nonlinear response
Note that the sum over the stdte) appears separately in the functions, in a continued fraction representati@Rs us-
numerator and the denominator. In this scheme, it is difficuling the more general projection operators. So, we could
to calculate each factor becauBg includes the sum of the avoid any danger of divergence in expanding the propagators
states. But in some appropriate systems, if the most considn series form, and we expanded the CFR again to a form
erable state can be fixed , &8)=|0k,) in the quantum useful for examining the convergence. Thus in real systems,
limit, the state calculation is reduced to CPS since the defiwe expect to be able to make a cutoff in the CFR with the
nition of P{l is reduced tdP{ in this case, while the form of Proper degree of the strength of interactions. Finally, in Sec.
conductivity is different. Iffa)=|0k,) and the most impor- V, we compared the two schemes in a simple interacting
tant contribution to the absorption power comes from transiSystem, discussed their merits and difficulties in obtaining

(5.1))

tion between the Landau levBl=0 andN=1, the form of
the conductivity in the EAPS is

i f dk,AF(1,0K,)|J0.4/?

(5.12

oy(w)=

(0— )= f dk,Qf (0K, , o)

the absorption power and line broadening, and showed the
simple result ofQg|(w) in two schemes.
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