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Quantum transport theory based on the equilibrium density projection technique

Joung Young Sug and Sang Don Choi*
Department of Physics, Kyungpook National University, Taegu 702-701, Seoul, Republic of Korea

~Received 13 May 1996!

We introduce a projection technique, called the equilibrium density projection technique, which involves
two schemes: the ensemble average projection scheme and the combined projection scheme. Using this tech-
nique directly on the Liouville equation, we derive the linear-nonlinear response formula. We also expand the
scattering factors to a continued-fraction representation to avoid the danger of divergence, and expand again
the continued-fraction representation formula in a series form. Finally, we introduce a simple example for the
linear response term and compare the two schemes.@S1063-651X~97!13501-2#

PACS number~s!: 02.50.2r, 05.40.1j
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I. INTRODUCTION

Research in quantum transport theory is very import
for investigation of microscopic phenomena of many-bo
systems. There are many theories in various methodolog
which are the Green function methods@3–10#, the linear re-
sponse formula from the quantum Liouville equation,@13–
17#, the quantum perturbation theories based on Boltzman
transport equation@19#, etc. Among those theories, many a
based on the well known Kubo response theory@11–15#.
Many of the theories use the projection technique to obta
useful form of the scattering factor@12–18#. Although those
theories are quite reasonable, the nonlinear behavior
been investigated in the limited scheme. Also, the problem
divergence in the expansion of the scattering factor has b
discussed in some research@15#. On the other hand, by di
rectly using a projection operator on the Liouville equatio
Kenkre’s group suggested a response function, which
volves Kubo’s theory as the lowest-order approximation@1#.
Although their theory contains a nonlinear factor in t
propagator, it is difficult to expand this term, since it is co
tained in the exponent.

Our group introduced a response function in many el
tron systems in which the nonlinear terms can be expan
by using the combined projection technique~CPT!. We also
suggested a continued fraction representation~CFR! of the
scattering factor which is contained in the linear respo
function @2#. In this paper, we will derive a generalize
linear-nonlinear response formula with the more comp
symbols of elements, and expand the linear-nonlinear s
tering factors to a CFR formula, which extend the form
linear CFR formula to a nonlinear CFR formula. The proje
tion operator used in this paper is different from Kenkre
since it contains themth order nonlinear index and thenth
order CFR index. Futhermore, this technique involves t
schemes, which are the ensemble average projection sch
~EAPS: the same as Kenkre’s definition@1#! and the com-
bined projection scheme~CPS! @2#. We call this the equilib-
rium density projection technique~EDPT! since it involves
the equilibrium density operator as a projection direction.

*Fax: 82-53-952-1739. Electronic address:
choisd@knuhep.kyungpook.ac.kr
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Sec. II, we will derive the integrodifferential equation of
dynamic variable, and obtain a response function in Four
Laplace transformed space. In this first stage, the result c
tains a nonlinear response term which is not determined
Sec. III, using themth order nonlinear projection operato
we will obtain the nonlinear response terms in similar wa
to Sec. II. In Sec. IV, we will expand the linear-nonline
scattering factors to CFR@2,12–14,16# with the nth order
projection operator to avoid any danger of divergence. A
the CFR formula shall be expanded again in a series form
the sake of examining the convergence@20–23#. In Sec. V,
we will introduce a simple example in an electron-impur
system, and compare the two schemes.

II. THE EXPECTATION VALUE OF A DYNAMIC
VARIABLE BY A EQUILIBRIUM DENSITY PROJECTION

TECHNIQUE „EDPT…

We consider a system of many-body syste
which is subject to an oscillatory external fie

EW (t)5eŴ lElexp(2ivt), whereeŴ l is the unit vector in the ex-
ternal field direction (l5x,y,z, etc.! and v is the angular
frequency. Then the HamiltonianH(t) and the correspond
ing Liouville operatorL(t), respectively, are given by

H~ t !5Hs1H8~ t !, ~2.1!

H8~ t ![RlEl~ t !5RlElexp~2 ivt ! ~2.2!

and

L~ t !5Ls1Ll8~ t !, ~2.3!

Ll8~ t !5Ll8El~ t !, ~2.4!

whereHs andLs are the time-independent part andLl8 cor-
responds toRl , the response operator in thel direction
( l5x,y,z, etc.!, which implies that

Ll8~ t !X5@Rl ,X#El~ t ! ~2.5!

for an arbitrary operatorX . The density operator for the
systemr(t) can be written as

r~ t !5rs1r8~ t !, ~2.6!
314 © 1997 The American Physical Society
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55 315QUANTUM TRANSPORT THEORY BASED ON THE . . .
wherers is the equilibrium density matrix. We can define th
expectation value of arbitrary dynamic quantityRk as

r̄ k~ t ![Tr$Rkr~ t !%[(
a

r ka~ t !, ~2.7!

wherek is the direction index (k5x,y,z, etc.!, Tr denotes
the many-body trace, and

r ka~ t ![„Rkr~ t !…aa . ~2.8!

In order to get a useful form ofr̄ k(t) from the quantum
Liouville equation, we define the projection operator in tw
types. The one is the ensemble average projection sch
~EAPS! introduced first by Kenkre@1# as

Pk
trX[Bkl

tr Tr$RkX% ~2.9!

where

Bkl
tr [

Ll8rs
Tr$RkLl8rs%

~2.10!

and using this we can obtain the expectation value of
dynamic quantityRk as

r̄ k~ t !5Pk
trr~ t !/Bkl

tr . ~2.11!

The other type is the combined projection scheme~CPS!
which was introduced by our group@2# as

Pk
aX[Bkl

a ~RkX!aa , ~2.12!

where

Bkl
a [

Ll8rs
~RkLl8rs!aa

~2.13!

and using this we can obtain

r̄ k~ t !5(
a

Pk
ar~ t !/Bkl

a . ~2.14!

These two schemes are useful in a description of real sys
and have some merits in calculating the scattering mec
nism as shown in Sec. V. Here we will write the two proje
tion schemes in a unified notation as

Pk0X[Bkl0~~RkX!!, ~2.15!

where the symbol~~ !! is Tr $ % in the EAPS scheme, and i
( )aa in the CPS. This projection technique shall be cal
the equilibrium density projection technique~EDPT!, since
Bkl0 includes rs . We define the dynamic variabl
r k(t)[((Rkr(t)))5Pk0r(t)/Bkl0 , which can ber̄ k(t) in the
EAPS andr ka(t) in the CPS. We can obtainr k(t) by using
Pk0 and it’s Abelian inversePk08 [12Pk0 . From the Liou-
ville equation we have
me

e

ms
a-

d

i\
]Pk0r8~ t !

]t
5Pk0LsPk0r8~ t !1Pk0LsP08r8~ t !1$Pk0D08~ t !

1Pk0D0%El~ t !, ~2.16!

i\
]Pk08 r8~ t !

]t
5Pk08 LsPk08 r8~ t !1Pk08 LsPk0r8~ t !

1$Pk08 D08~ t !1Pk08 D0%El~ t !, ~2.17!

where

Dl0[Ll8rs ~2.18!

and

Dl08 ~ t ![Ll8r8~ t !. ~2.19!

In order to expand the quantity in terms of the equilibriu
density rs and remove the fourth term in Eq.~2.17!, we
define the projection directionBkl0 as

Bkl0[
Ll8rs
Lkl0

[
Dl0

Lkl0
, ~2.20!

where

Lkl0[„~RkDl0!…. ~2.21!

It is to be noted that the direction of this projection isLl8rs
and the projection is time independent. We assume that
perturbation of the system may be expanded as@2#

Dl08 ~ t ![Dl0

~„RkDl08 ~ t !…!

„~RkDl0!…
. ~2.22!

Thus the solution of Eq.~2.17! can be

Pk08 r8~ t !5S 2 i

\ D E
0

t

dsGk0~ t2s!Pk08 LsPk0r8~s!.

~2.23!

Here the propagator is

Gk0~t!5exp~2 i tPk08 Ls /\!, ~2.24!

wheret[t2s . Substituting Eq.~2.23! into Eq. ~2.16!, we
obtain an integrodifferential equation forr k(t) as

]r k~ t !

]t
5Akl0r k~ t !2E

0

t

Qkl0~ t2s!r k~s!ds2~ i /\!Lkl0El~ t !

2~ i /\!r k
1~ t !, ~2.25!

wherer k(0)50 for the initial condition and

Akl0[
2 i

\Lkl0
„~Rk1D0!…, ~2.26!

Rk1[RkLs , ~2.27!

Qkl0~t![
1

\2Lkl0
~„Rk1f 1~t!…!, ~2.28!
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f 1~t![Gk0~t! f 1 , ~2.29!

f 1[L1D0 , ~2.30!

L1[~12Pk0!Ls[Pk08 Ls , ~2.31!

r k
1~ t ![~„Rk

1r8~ t !…!El~ t !, ~2.32!

Rk
1[RkLl8. ~2.33!

Equation~2.25! is the kinetic equation which shows the tim
evolution of the dynamical variable. The first three terms
the right hand side are of linear response, but the last t
gives nonlinearity. We now express the behavior of the
namical variable in the Fourier-Laplace transformed spa
The Fourier-Laplace transformTFL of a time-dependen
functionX(t) is defined as

X̃~z![TFL@X~ t !#5E
0

`

exp~2 izt!X~ t !dt.

Then by applying the convolution theorem, thetFL of Eq.
~2.25! turns out to be

r̃ k~z!5
2~ i /\!Lkl0Ẽl~z!

iz2Akl01Q̃kl0~z!
1

2~ i /\! r̃ k
1~z!

iz2Akl01Q̃kl0~z!
~2.34!

wherer̃ k(z), Q̃kl0(z), Ẽl(z) and r̃ k
1(z) , respectively, are the

TFL of r k(t), Qkl0(t), El(t) andr k
1(t) . The last term, which

shows the nonlinearity, shall be dealt with in a similar way
Sec. III.

III. THE KINETICS OF THE mTH-ORDER NONLINEAR
RESPONSE

We can reform Eq.~2.34! as

r̃ k~z!5Tkl0
0 Lkl0Ẽl~z!1Tkl0

0 r̃ k
1~z!, ~3.1!

where

Tkl0
0 [

2~ i /\!

iz2Akl01Q̃kl0~z!
~3.2!

and can guess that the nonlinear part can be expanded
tematically further as in the previous papers@2#. In order to
expand the nonlinear part , we define themth-order nonlinear

projection operatorPk0
m and it’s Abelian inversePk0

m8 as

Pk0
m X[Bkl0

m ~ t !~~Rk
m
„El~ t !…

mX!!, ~3.3!

Pk0
m8[12Pk0

m , ~3.4!

where

Rk
m[Rk~Ll8!m; ~3.5!

and we chooseBkl0
m (t) as
n
m
-
e.

ys-

Bkl0
m ~ t ![

Dl0

Lkl0
m
„El~ t !…

m , ~3.6!

where

Lkl0
m [„~Rk

mDl0!…. ~3.7!

In a similar way as Eq.~2.22!, we assume that

Dl08 ~ t !5Dl0

~~Rk
mDl08 ~ t !!!

~~Rk
mDl0!!

. ~3.8!

Then with a similar procedure from Eq.~2.16! to Eq. ~2.34!,
we have the expectation value of themth order nonlinear
response function inz space as

r̃ k
m~z!5

2~ i /\!Lkl0
m Ẽl

m11~z!

iz2Akl0
m 1Q̃kl0

m ~z!
1

2~ i /\! r̃ k
m11~z!

iz2Akl0
m 1Q̃kl0

m ~z!
,

~3.9!

where

Akl0
m [m~ iv!1

2 i

\Lkl0
m
„~Rk1

mD0!…
, ~3.10!

Rk1
m [Rk

mLs ~3.11!

andQ̃kl0
m (z) is theTFL of Qkl0

m (tm), given as

Qkl0
m ~tm![

1

\2Lkl0
m ~~Rk1

m f 1
m~tm!!!, ~3.12!

wheretm5t2sm and

f 1
m~tm![Gk0

m ~tm! f 1
m, ~3.13!

Gk0
m ~tm!5exp~2 i tmPk0

m8Ls /\! ~3.14!

f 1
m[L1

mD0 , ~3.15!

L1
m[~12Pk0

m !Ls[Pk0
m8Ls , ~3.16!

r k
m11~ t ![~~Rk

m11r8~ t !!!El
m11~ t !, ~3.17!

Rk
m11[Rk~Ll8!m11. ~3.18!

Substituting successively Eq.~3.9! into Eq. ~3.1!, we have
the linear-nonlinear response function inz space as

r̃ k~z!5 (
m50

` H S )
j50

m

Tkl0
j DLkl0

m Ẽl
m11~z!J , ~3.19!

where

Tkl0
j [

2~ i /\!

iz2Akl0
j 1Q̃kl0

j ~z!
. ~3.20!

Here the first term,m50, is the linear response. If the syste
is subject to an oscillatory external fiel
E(t)5El(0)exp(2ivt) , we have theTFL of j11th degree of
it, as
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Ẽj11~z!5F12 (
k50

`

~21!k$ i j v~ iz1 iv!21%kGE0
j Ẽ~z!,

~3.21!

and Eq.~3.19! can be rewritten as

r̃ k~z!5x̃klẼ~z!, ~3.22!

where

x̃kl~z!5 (
m50

` F S )
j50

m

Tkl0
j D

3Lkl0
m F12 (

k50

`

~21!k$ i j v~ iz1 iv!21%kGE0
j G ,
~3.23!

which is the linear(m50) and nonlinear(m>1) susceptibil-
ity in the z space.

IV. THE CONTINUED FRACTION REPRESENTATION
„CFR… OF THE LINEAR-NONLINEAR SCATTERING

FACTORS, Q̃kl0
m
„Z…

The time-independent Liouville operatorLs is composed
of diagonal part Ld and nondiagonal partLv as
Ls5Ld1Lv . There are many studies to expandG̃kl0

m (z) in
series expansion for the diagonal propaga
G̃d[( iz2Ld)

21 , such asG̃[G̃d(n(G̃dP8Lv)
n @16#. But

this manipulation may provoke danger of divergence at re
nance peak,v5v0 @15#. To avoid this danger we like to
expandG̃ in a continued fraction form@2,12–16#. We start
with the equation of motion forf 1

m(tm) in Eq. ~3.12!

] f 1
m~tm!

]tm
5S 2 i

\ DL1mf 1m~tm!, ~4.1!

with the definitions of Eqs.~3.13!–~3.18!. We can separate i
as

f 1
m~tm!5 f 1

m1 f 1
m8~tm! ~4.2!

and in order to obtainQ̃kl0
m (z), we define the projection op

eratorPk1
m and it’s Abelian inverse as

Pk1
m X5Bkl1

m ~~Rk1
m X!!, ~4.3!

Pk1
m8X[~12Pk1

m !X, ~4.4!

such that

\2Lkl0
m Qkl0

m ~tm!5~~Rk1
m f 1

m~tm!!!

5„~Rk1
m f 1

m!…1~1/Bk1
m !„Pk1

m8 f 1
m~tm!…,

~4.5!

where we will choose the projection directionBkl1
m later. We

now separate Eq.~4.1! with help of this projection operato
as
r

o-

]Pk1
m f 1

m8~tm!

]tm
5S 2 i

\ DPk1
mDl1

m1S 2 i

\ DPk1
m L1

mPk1
m f 1

m8~tm!

1S 2 i

\ DPk1
m L1

mPk1
m8 f 1

m8~tm!, ~4.6!

]Pk1
m8 f 1

m8~tm!

]tm
5S 2 i

\ DPk1
m8Dl1

m1S 2 i

\ DPk1
m8L1

mPk1
m8 f 1

m8~tm!

1S 2 i

\ DPk1
m8L1

mPk1
m f 1

m8~tm!, ~4.7!

where

Dl1
m[L1

mf 1
m. ~4.8!

In order to expand with respect to the equilibrium dens
rs throughDl1

m and to remove the first term of Eq.~4.7!, we
define the projection directionBkl1

m as

Bkl1
m [

Dl1
m

Lkl1
m , ~4.9!

where

Lkl1
m [„~Rk1

mDl1
m!…. ~4.10!

So, we obtain from Eq.~4.7!

Pk1
m8 f 1

m8~tm!52~ i /\!E
0

tm
K1
m~tm2h!Pk1

m8L1
mPk1

m f 1
m8~tm!dh,

~4.11!

where the new propagator is

K1
m~tm2h!5exp„2 i ~tm2h!Pk1

m8L1
m/\…. ~4.12!

Substituting Eq.~4.11! into Eq. ~4.6!, we can obtain the in-
tegrodifferential equation as

]~~Rk1
m f 1

m8~tm!!!

]tm
52S i\ DLkl1

m

2S i

\Lkl1
m D „~Rk2

mD1
m!…~~Rk1

m f 1
m8~tm!!!

2S 1

\2Lkl1
m D S SRk2

m E
0

tm
f 2
m~tm2h!dhD D

3~~Rk1
m f 1

m8~tm!!!, ~4.13!

where

Rk2
m [Rk1

m L1
m, ~4.14!

f 2
m~tm1![K1

m~tm2h! f 2
m, ~4.15!
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f 2
m[Pk1

m8L1
mD1

m[L2
mD1

m, ~4.16!

L2
m[Pk1

m8L1
m ~4.17!

and we can obtain the solution of Eq.~4.13! in the z space
from TFL utilizing the convolution theorem, as

~~Rk1
m f̃ 1

m8~z!!!5

2S 1z\ DLkl1
m

iz1S i

\Lkl1
m D „~Rk2

mD1
m!…1Q̃kl1

m ~z!

,

~4.18!

where

Q̃kl1
m ~z![S 1

\2Lkl1
m D ~~Rk2

m f̃ 2
m~z!!!, ~4.19!

so, we have

Q̃kl0
m ~z!5

2 i

z\2Lkl0
m „~Rk1

m f 1
m!…

1

S 21

z\3Lkl0
m DLkl1

m

iz1S i

\Lkl1
m D „~Rk2

mD1
m!…1Q̃kl1

m ~z!

,

~4.20!

since

f̃ 1
m~z!5E

0

`

e2 izt@ f 1
m1 f 1

m8~t!#dt5
1

iz
f 1
m1 f 1

m8~z!.

~4.21!

We can obtain a similar form ofQ̃kl1
m (z) by repeating the

similar procedure. Then21th-order CFR form is obtained a
Q̃kl~n21!
m ~z![

1

\2Lkl~n21!
m ~~Rkn

m f̃ n
m~z!!!

5
2 i

z\2Lkl~n21!
m „~Rkn

m f n
m!…

1

S 21

z\3Lkl~n21!
m DLkln

m

iz1S i

\Lkln
m D „~Rk~n11!

m Dn
m!…1Q̃kln

m ~z!

,

~4.22!
with the definitions

Pkn
m X[

Dn
m

Lkln
m „~Rkn

m X!…, ~4.23!

Dn
m[Ln

mf n
m , ~n>1! ~4.24!

Lkln
m [„~Rkn

m Dn
m!…, ~n>1! ~4.25!

Rkn
m [Rk~n21!

m Ln21
m , ~n>2! ~4.26!

Ln
m[Pk~n21!

m8 Ln21
m , ~n>2! ~4.27!

f n
m[Ln

mDn21
m , ~n>2! ~4.28!

Q̃kln
m ~z![

1

\2Lkln
m ~~Rk~n11!

m f̃ n11
m ~z!!!, ~n>1!

~4.29!

f̃ n
m~z!5

\

iz2 iL n
m f n

m, ~n>2!. ~4.30!

Substituting repeatedlynth order ton21th order, we can
expand the linear scattering factorQ̃kl0(z), wherem50 and
the nonlinear scattering factorsQ̃kl0

m (z), wherem>1 , to
compact CFR form as
Q̃kl0
m ~z!5 ig0

m1
iD1

m

iz1 iv1
m1 ig1

m1
iD2

m

iz1 iv2
m1 ig2

m1
iD3

m

iz1 iv3
m1 ig3

m

�

1
iDn22

m

iz1 ivn22
m 1 ign22

m 1
iDn21

m

iz1 ivn21
m 1 ign21

m 1
iDn

m

iz1 ivn
m1Q̃kln

m ~z!

, ~4.31!
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where

gn
m[

21

z\2Lkln
m „~Rk~n11!

m f n11
m !…, ~n>0! ~4.32!

Dn
m[S i

z\3Lkl~n21!
m DLkln

m , ~n>1! ~4.33!

vn
m[S 1

\Lkln
m D „~Rk~n11!

m Dn
m!…, ~n>1!. ~4.34!

In this expansion, since the diagonal propagatorGd is not
included in the elements ofQ̃kl0

m (z), we can expand this form
to series ofgn

m , Dn
m , andvn

m with no danger of divergency
@23#. For series expansion, we define

Gn
m[

iDn
m

iz1 ivn
m1 ign

m1Gn11
m ~4.35!

and

Kn
m5

1

iz1 ivn
m1 ign

m , ~4.36!

so, we can expandGn
m s, as

Gn
m5 iDn

mKn
m(
s50

`

~21!s~Gn11
m Kn

m!s. ~4.37!

Thus we can reform the scattering factorQ̃kl0
m (z) as

Q̃kl0
m ~z!5 ig0

m1~ iD1
m!K1

m(
r50

`

~21!rFK1
m~ iD2

m!K2
m

3(
s50

`

~21!sHK2
m~ iD3

m!K3
m

3 (
c50

`

~21!c~K3
mG4!

cJ sG r
' ig0

m1~ iD1
m!K1

m2(
r52

`

~21!r H F )
s51

r

~ iDs
m!G

3F )
s51

r21

~Ks
m!2GKr

mJ 1•••. ~4.38!

In order words, we can expand the scattering fac
Q̃kl0
m (z) in series form withDn

m and Kn
m . We expect, in a

weak perturbed system, that we can examine the con
gency in the first several terms easily.

V. AN EXAMPLE AND DISCUSSION
OF THE TWO SCHEMES

In order to illustrate and compare the two schemes,
CPS and EAPS, we consider a system of many electr
which is subject to an oscillatory electric fiel

EW 5eŴ lEl(0)exp(2ivt), whereeŴ l is the unit vector in the elec
tric field directionl ( l5x,y,z, etc.! andv is the angular fre-
r

r-

e
ns

quency. In this system the response operatorRl in Eq. ~2.2!
can be2Pl , where2Pl[( iei r li is the polarization, and the
corresponding Liouville operatorL(t) in Eq. ~2.5! is given
by

L8~ t !X52@Pl ,X#El~ t ! ~5.1!

for an arbitrary operatorX. We consider a system of elec
trons in isotropic semiconductors which interact weakly w
background impurities and assume that the electron-elec
interaction is absent. For a static magnetic fieldBW applied in
thez axis, the electron energy is quantized. If, in addition
microwave of angular frequencyv is applied along thez
direction, the electromagnetic energy is absorbed
v'vc , vc being the cyclotron frequency, i.e., the cyclotro
transition arises. The Liouville operatorLs in Eq. ~2.3! can
be written as

Ls5Le1Lv , ~5.2!

whereLe andLv are the Liouville operators corresponding
the electron HamiltonianHe and the scattering potentialV,
respectively. If the microwave is circularly polarized, the a
sorption power is proportional to the real part of the cond
tivity tensor skl(v) with k52 and l51, for which the
dynamic variableRk in this system is the currentJ2 , as

~Rk!ab[Ja,a11
2 db,a11 . ~5.3!

And using the Kubo identity@2,13# we have

~L8rs!ba[~Dl0!ba52DFb,aJa11,a
1 db,a11 . ~5.4!

Here J65Jx6 iJy , DFb,a[(Fb2Fa)/eba and
eba[eb2ea , whereea is the energy eigenvalue andFa the
Fermi-distribution function for the stateua&[uN,kW & , N be-
ing the Landau index andkW the electron wave vector.

A. CPS

Applying the CPS, we obtain@2#

Lkl0
a 52 iDFa11,aJa,a11

2 Ja11,a
1 , ~5.5!

Akl0
a 52 i ea11,a52 ivc . ~5.6!

Thus we have the linear conductivity in the CPS as

s̃kl~v!5(
a

s̃kl
a ~v!52 i\(

a

DFa11,aJa,a11
2 Ja11,a

1

~\v2\vc!2 i\Q̃kl0
a ~v!

,

~5.7!

where Re„s̃kl(v)….0 sinceDFa11,a,0 , and the scattering
factor Q̃kl0

a (v) with the definition of Eq.~2.28! is given as

Q̃kl0
a ~v![

1

\2Lkl0
a @Rk1 f̃ 1~v!#aa[ iD~a,v!1g~a,v!,

~5.8!

which can be calculated further in a similar manner. In E
~5.8!, the imaginary partD(a,v) is the line shift and the rea
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part g(a,v) is the half width of the broadening due to t
scattering. We can obtain the absorption power, neglec
the line shift, as

P~v!5
1

2
Re~sE2!}Re„s~v!…

5(
a

uDFa11,auuJa11,a
1 u2g~a,v!

~v2vc!
21g2~a,v!

, ~5.9!

where ‘‘Re’’ means the real part. In the quantum limit whe
\vc@kBT , almost all the electrons are in the ground sta
ua&5u0,kz& . Hence, the most important contribution to t
absorption power comes from transition between the Lan
levelN50 andN51 , so we can get the absorption power

P~v!}E dkz
uDFa11,auuJa11,a

1 u2g~0,kz ,v!

~v2vc!
21g2~0,kz ,v!

~5.10!

and thus in the CPS, we cannot obtain the half width direc
but can get it in the absorption power through integrating
kz in Eq. ~5.10!. Even though the CPS has the merit of c
culating the power in the feature, it is acompanied by
difficulty of integration.

B. EAPS

In the EAPS, the form of the conductivity is given by

s̃kl~v!5
2~ i /\!Lkl0

tr

iz2Akl0
tr 1Q̃kl0

tr ~v!
[

2~ i /\!(
a

Lkl0
a8

iz2(
a

Akl0
a8 1(

a
Q̃kl0

a8 ~v!

,

~5.11!

where the prime indicates that the projection operatorPk
tr is

used instead ofPk
a in the calculation ofAkl

a and Q̃kl
a (v).

Note that the sum over the stateua& appears separately in th
numerator and the denominator. In this scheme, it is diffi
to calculate each factor becausePk

tr includes the sum of th
states. But in some appropriate systems, if the most con
erable state can be fixed , asua&5u0,kz& in the quantum
limit, the state calculation is reduced to CPS since the d
nition of Pk

tr is reduced toPk
a in this case, while the form o

conductivity is different. Ifua&5u0,kz& and the most impor
tant contribution to the absorption power comes from tra
tion between the Landau levelN50 andN51, the form of
the conductivity in the EAPS is

s̃kl~v!5

i E dkzDF~1,0,kz!uJ0,1u2

~v2vc!2 i E dkzQ̃kl0
a8 ~0,kz ,v!

~5.12!
g
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and so, in this scheme, the line shiftD(a,v) is the integra-
tion of the imaginary part ofQ̃kl

a (v) and the half width
g(a,v) is the integration of the real part ofQ̃kl

a (v), as

E dkzQ̃kl0
a8 ~0,kz ,v![ iD~0,kz ,v!1g~0,kz ,v!.

~5.13!

If we neglect the shift, the absorption power is obtained a

P~v!}
g~0,kz ,v!*dkzuDF1,0uuJ1,0

1 u2

~v2vc!
21g2~0,kz ,v!

, ~5.14!

where

g~0,kz ,v![E dkzReQ̃kl0
a8 ~0,kz ,v! ~5.15!

so it is not necessary to calculate the absorption powe
obtain the line width. The line widthg(0,kz ,v) is merely the

kz integration of the real part ofQ̃kl
a8(v) in Eq. ~5.15!. The

sacttering factorQ̃kl
a (v) was introduced in the lowest- orde

CFR in our previous work.@2#

VI. CONCLUSION

In this paper, we have obtained the general response fu
tion using the EDPT which contains two schemes, the EA
and CPS, in Secs. II and III. The response function involv
a linear response term and nonlinear response terms.

In Sec. IV, we have expanded the scattering facto
which are contained in the linear and nonlinear respo
functions, in a continued fraction representations~CFRs! us-
ing the more general projection operators. So, we co
avoid any danger of divergence in expanding the propaga
in series form, and we expanded the CFR again to a fo
useful for examining the convergence. Thus in real syste
we expect to be able to make a cutoff in the CFR with t
proper degree of the strength of interactions. Finally, in S
V, we compared the two schemes in a simple interact
system, discussed their merits and difficulties in obtaini
the absorption power and line broadening, and showed
simple result ofQ̃kl

a (v) in two schemes.

ACKNOWLEDGEMENTS

This research has been supported by KOSEF~1996! and
by Korea Ministry of Education~BSRI 96-2405!.
@1# V. M. Kenkre and M. Dresden, Phys. Rev. Lett.29, 9 ~1971!;
V. M. Kenkre, Phys. Rev. A4, 2327~1971!; 6, 769 ~1972!; 7,
772 ~1973!; V. M. Kenkre and H. L. Wu, Phys. Lett. A135,
120 ~1989!; P. Grigolini, V. M. Kenkre, and H. L. Wu, Phys.
Rev. B40, 7045~1989!.
@2# J. Y. Sug, N. L. Kang, and S. D. Choi, J. Kor. Phys. Soc.26,
356 ~1992!; J. Y. Sug, C. H. Choi, and S. D. Choi, Il Nuovo
Cimento B109, 10 ~1994!; J. Y. Sug, C. H. Choi, Y. J. Lee,
and S. D. Choi, J. Kor. Phys. Soc.28, s400~1995!; J. Y. Sug,
N. L. Kang, J. Y. Ryu, and S. D. Choi, Phys. Rev. E51, 929



v.
e,

.

ys.

55 321QUANTUM TRANSPORT THEORY BASED ON THE . . .
~1995!.
@3# J. M. Luttinger, Phys. Rev.121, 942~1960!; 121, 1251~1961!;

J. M. Luttinger and P. Nozieres,ibid. 127, 1431~1962!; J. M.
Luttinger and J. C. Ward,ibid. 118, 1417~1960!.

@4# P. C. Martin and J. Schwinger, Phys. Rev.115, 6, 1342~1959!.
@5# W. Xiaoguang, F. M. Peeters, and J. T. Devreese, Phys. Re

134, 8800 ~1986!; X. Wu, F. M. Peeters, and J. T. Devrees
Phys. Rev. B40, 4090~1989!.

@6# X. J. Kong, C. W. Wei, and S. W. Gu, Phys. Rev. B39, 3230
~1989!.

@7# C. S. Ting and X. L. Lei, Solid State Commun.51, 553~1984!;
X. L. Lei and C. S.Ting, Phys. Rev. B32, 1112~1985!; J. L.
Birman and C. S. Ting, J. Appl. Phys.58, 2270~1985!; C. S.
Ting, S. C. Ying, and J. J. Quinn, Phys. Rev. B16, 5394
~1977!; X. L. Lei and C. S. Ting,ibid. 34, 7003~1986!; D. Y.
Xing and C. S. Ting,ibid. 35, 3971~1987!; L. Y. Chen and C.
S. Ting, ibid. 40, 3756~1989!.

@8# G. Y. Hu and R. F. Oconnell, Phys. Rev. B36, 5798~1987!;
ibid. 40, 3600 ~1989!; G. W. Ford, J. T. Lewis, and R. F
Oconnell, Phys. Rev. A37, 4419~1989!.

@9# D. I. Cox, C. Tanus, and J. W. Wilkins, Phys. Rev. B33, 2132
~1986!.

@10# R. S. Fishman, Phys. Rev. B39, 2994~1989!; R. S. Fishman
and G. D. Mahan, Phys. Rev. B39, 2990~1989!; G. D. Mahan,
Phys. Rev.110, 321 ~1984!.
B

@11# R. Kubo, J. Phys. Soc. Jpn.12, 570 ~1957!.
@12# H. Mori, Progr. Theor. Phys.33, 423 ~1965!; 34, 399 ~1966!;

M. Tokuyama and H. Mori,ibid. 55, 2 ~1975!.
@13# A. Kawabata, J. Phys. Soc. Jpn.23, 999 ~1967!.
@14# K. Naga, T. Karasudani, and H. Okamoto, Prog. Theor. Ph

63, 1904~1980!.
@15# P. N. Argyres and J. L. Sigel, Phys. Rev. Lett.31, 1397

~1973!; Phys. Rev. B9, 3197 ~1974!; 10, 1139 ~1974!; S.
Badjou and P. N. Argyres,ibid. 35, 5964~1987!.

@16# M. H. Lee and J. Hong, Phys. Rev. Lett.48, 634~1982!; Phys.
Rev. B26, 2227 ~1982!; M. H. Lee, J. Math. Phys.24, 2512
~1983!; M. H. Lee and J. Hong, Phys. Rev. B32, 7734~1985!.

@17# A. Suzuki and D. Dunn, Phys. Rev. B25, 7754~1982!.
@18# K. Seeger,Semiconductor Physics~Springer, Berlin, 1985!.
@19# J. R. Barker, J. Phys. C6, 2633~1973!; Solid State Electron.

21, 261 ~1978!; J. R. Barker and D. K. Ferry,ibid. 23, 531
~1980!.

@20# R. W. Zwanzig, inLectures in Theoretical Physics, edited by
W. E. Downs and J. Downs~Interscience, New York, 1961!,
Vol. III.

@21# W. Peier, Physica57, 565 ~1972!.
@22# N. Sawaki, J. Phys. C16, 4611 ~1983!; D. Ahn and S. L.

Chuang, Phys. Rev. B37, 2592~1988!.
@23# Z. X. Cai, S. Sen, and S. D. Mahanti, Phys. Rev. Lett.16, 1637

~1992!.


